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Abstract. It is well-known that the Ginzburg-Landau equation on R has a

global attractor [15] that attracts in L∞
loc(R) all the trajectories. This attractor

contains bounded trajectories that are analytical functions in space. A famous
theorem due to P. Collet and JP. Eckmann asserts that the ε-entropy per

unit length in L∞ of this global attractor is finite and is smaller than the

corresponding complexity for the space of functions which are analytical in a
strip. This means that the global attractor is flatter than expected. We explain

in this article how to establish the Collet-Eckmann Theorem in a Hilbert space

framework.

1. Introduction.

1.1. A tribute to Collet and Eckmann. This article, which partakes of partial
differential equations and ergodic theory, is concerned with some properties of global
attracting sets for the dynamical systems provided by the complex Ginzburg-Landau
equation (CGL) on the whole line x ∈ R

∂tu = (1 + iα)∆u+ u− (1 + iβ)u|u|2. (1)

Here the unknowns u map R+
t ×Rx into C and α, β are parameters that belong to

R. As we shall see in the sequel, estimating the size of global attracting sets for (1)
provides us with some extra difficulties that come from the fact that R equipped
with the Lebesgue measure has infinite volume.

In a seminal article P. Collet and JP. Eckmann [5] have proved that the global
attractor for (1) has finite complexity, using the ε-entropy by unit length as in [13];
this is required since the global attractor has infinite dimension. On the other
hand, since the CGL equation (1) is of parabolic type, then one can prove that the
global attractor for this dynamical system is included into some subset of analytical
functions in a neighboring strip of the real axis. The Collet-Eckmann result proves
that in fact the ε-entropy by unit length of this global attractor is much smaller
than the corresponding dimension for this set of analytical functions. The proof of
Collet and Eckmann use intensively the L∞ norm. Here we would like to prove the
Collet-Eckmann theorem in a Hilbert space framework (namely L2); we believe that
this framework is more tractable for a larger class of PDEs than those of parabolic
type.
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2 ENTROPY BY UNIT LENGHT

To study the CGL equation on the whole line on global Sobolev spaces as L2(R)
or H1(R) is somehow irrelevant for the physics. Actually these spaces do not contain
structures as fronts or periodic solutions in space. Therefore in the last decades a
particular attention in solving (1) in local spaces has increased, going back to [4],
[9] and [10] for the initial value problem. For the dynamical properties of this
equation, we already have pointed out the Collet-Eckmann study of these extensive
dynamical systems. Another approach, due to S. Zelik, using weighted Sobolev
spaces has been advocated in [20], [21] for the study of extended dynamical systems
as reaction-diffusion equations on the whole space.

This article is organized as follows; we complete this introduction by recalling
some well known facts about the dynamics of the solutions to the CGL. To begin
with, we make precise the notion of attractor. Then we will introduce the ε-entropy
by unit length. We then state our main result that compares with the Collet-
Eckmann result.

We conclude this subsection by introducing some notations. For a given Hilbert
space as L2(B) wherein B is an interval included in R, the scalar product of two
functions reads Re

∫
B
uvdx. Throughout this article we will use constants denoted by

C, C1, K, .... that may vary from one line to one another, and that may depend on
the data α, β. To compare two functions we write f � g if there exists a numerical
constant C such that f ≤ Cg. In other words this relation reads also f = O(g)
with the Landau notations. We set f ' g if f = O(g) and g = O(f).

1.2. Attractor for the CGL on the line. To begin with, let us observe that the
equation (1) is translation invariant, i.e that for any u solution to (1) then

Tyu(x) = u(x− y),

is also solution to the equation (here the time variable t is omitted). This implies
a lack of compactness for the trajectories in classical Sobolev spaces and makes the
dynamical study of the CGL equation different. To overcome this difficulty, we use
the framework of uniformly local spaces, as in the article [15], and the notion of
Z-Zρ attractor as in [7]. For the theory of infinite-dimensional dynamical systems
we would like to refer to [1], [2], [11], [16] and [17]; we follow here the framework
described in [16].

Consider (Z, ‖.‖) a Banach space, or more generally a Fréchet space, that is
continuously embedded into another space (Zρ, ‖.‖ρ). Assume that the IVP problem
associated with (1), supplemented with initial data in Z, is globally well-posed.
Hence we have a semigroup St : Z → Z, u0 7→ u(t). We then recall

Definition 1.1 ((Z,Zρ)-Attractor). A set A is called (Z,Zρ)-Attractor for St in
Z if the following conditions hold:

1. A is nonempty, closed, bounded in Z, and compact in Zρ.
2. A is invariant under St, i.e., St(A) = A for all t > 0.
3. Every B ⊂ A which is bounded in Z is attracted to A in Zρ as follows,

distZρ(St(B),A) := sup
b∈B

inf
a∈A
‖St(b)− a‖ρ → 0 for t→∞ .

We now recall from [15] one framework to study CGL equations on the whole
line. The functional spaces are chosen with some weight functions in order to enforce
some compactness, and large enough to include all physically relevant solutions as
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periodic solutions, fronts, which have no decay if x goes to the infinity. First we
introduce a positive weight function ρ : R→ (0,∞) which is continuous, bounded,
and such that

∫
R ρ(x)dx < +∞. We also assume

max(|ρ′(x)|, |ρ′′(x)|) ≤ ρ(x).

For instance ρ(x) = (1 + x4)−1 works and we shall deal with this weight function
in the sequel. Introduce then

‖u‖2L2
ul(R)

= sup
y∈R

∫
R
ρ(x− y)|u(x)|2dx,

and L2
ul(R) = {u ∈ L2

loc(R); ‖u‖L2
ul
<∞ and ‖Tyu− u‖L2

ul
→ 0 as y → 0}.

These uniformly local spaces admit Sobolev versions as H1
ul(R) = {u ∈ L2

ul(R);ux ∈
L2
ul(R)}. Then let Hρ denote the space of function

Hρ = {u ∈ H1
loc(R);

∫
R

(|u(x)|2 + |ux(x)|2)ρ(x)dx < +∞}.

We now recall from [15]

Theorem 1.1. The IVP for (CGL) is well defined in H1
ul(R); moreover for any

t > 0 and n ∈ N , St maps any given bounded set B ⊂ H1
ul(R) into a bounded set

in Hn
ul(R). Furthermore (1) has a global (H1

ul, H
1
ρ)-attractor A which is invariant

by translation.

Proof. See [15]; see also [18] for the proof of analyticity for the functions that belong
to the global attractor.

Remark 1.1. The attractor A will not depend on the particular choice of the weight
function ρ.

1.3. ε-Entropy per Unit Length. We follow here Collet and Eckmann [5]. To
begin with, we recall from [8] that the CGL equation for x ∈ [−L,L] with periodic
boundary conditions has a global attractor whose fractal dimension is finite. The
fractal or box-dimension is defined as follows. Consider N ′(ε) the minimal number
of balls of radius ε in some Banach space X, say L∞(R), to cover A. Then

dimFA = lim
ε→0

log(N ′(ε))

− log(ε)
. (2)

Actually, in [8] it is given a lower bound for this dimension as C(α, β)L, where
C(α, β) is a constant which depends on the data for the equation. As a consequence,
since this periodic attractor is embedded into the attractor defined in the previous
section, letting L→ +∞ we prove that the attractor for the CGL equation on the
line has infinite dimension.

The idea is then to compute the complexity of the attractor through a window of
size 2L. Consider A and consider A/QL the set of the restrictions of the functions
in the attractor to a space interval QL of width 2L. Unfortunately, it turns out
that the fractal and Hausdorff dimension in L∞ of A/QL are also infinite.

This example shows that, in contrast to bounded domains, we cannot expect
any finite dimensional reduction in general and the dynamics reduced to the global
attractor remains infinite dimensional. On the other hand, intuitively the global
attractor is thinner (or flatter) than the whole space and we need another tool to
express that the dynamics on the attractor is finite-dimensional. Then the idea
is to introduce the ε-entropy per unit length see [13], as in [19], [20]. Let N ′QL
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the minimum number of balls of radius ε which are necessary to cover A|QL in
L∞(QL)(this number is finite).

Definition 1.2. (ε-entropy by unit lenght in L∞)

H ′ε = lim
L→∞

log(N ′QL(ε))

2L
.

Then it is proven in [5]

Theorem 1.2. There exists C a constant that depends on the data α, β of the
equation such that for ε small

1

C
log(

1

ε
) ≤ H ′ε ≤ C log(

1

ε
).

In the remaining of this article we prove that we can substitute a suitable L2 local
norm to the L∞ norm.

1.4. Our main result. To begin with, we define the local L2 norm that will be
used throughout this article. Consider B an interval of R. Let |B| denotes the
length of B. For any function u that is locally square integrable on R, we state

Definition 1.3.

||u||2L2(B) =
1

|B|

∫
B

|u(x)|2dx.

For a large L define QL = [−L,L] and NQL(ε) the minimum number of balls of
radius ε which are necessary to cover A|QL in L2(QL)(this number is finite). Then
define

Hε = lim
L→∞

log(NQL(ε))

2L
. (3)

Then

Theorem 1.3. There exists C a constant that depends on the data α, β of the
equation such that for ε small

1

C
log(

1

ε
) ≤ Hε ≤ C log(

1

ε
).

The remaining of the article is organized as follows. In the next section, we prove
the existence of the entropy by unit length with our scaled L2 norm. Then we
move to the proof of Theorem 1.3. Actually due to the inequality ||u||L2(B) ≤
||u||L∞ the upper bound for the L2 norm is a consequence of the Collet-Eckmann
result. Nevertheless, we indicate in the Section 3 a self-contained proof which has in
own interest. For the lower bound, the method in Collet-Eckmann does not apply
straightforwardly, neither the construction of the unstable manifold as in [20]; hence
we provide a complete proof in Section 4.

2. Existence of the ε-entropy by unit length. We establish here that the
ε-entropy Hε exists in R+ ∪ {+∞}. To begin with, we state and prove

Lemma 2.1. Let B and B′ denote two disjoint bounded sets of R. We denote by
NB(ε) and NB′(ε) the minimum number of balls in L2(B) and in L2(B′) of radius
ε which is needed to cover respectively A|B and A|B′ . We have

NB∪B′(ε) ≤ NB(ε)NB′(ε).
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Remark 2.1. Actually, we can relax the assumption B and B′ disjoints. We
observe that the result holds true if the Lebesgue measure of B ∩B′ is 0.

Proof. We denote by u|B the restriction of u to B . Introduce uBi=1,2..NB(ε) and

uB
′

j=1,2..NB′ (ε)
the centers of the balls in L2(B) and in L2(B′) of radius ε to cover

respectively A|B and A|B′ . Introduce the functions

uB∪B
′

i,j =

{
uBi for x ∈ B,
uB
′

j for x ∈ B′.

We prove below that the balls centered at uB∪B
′

i,j cover A|B∪B′ . Let u ∈ A and pick

uBi , uB
′

j the functions such that ‖u|B − uBi ‖L2(B) ≤ ε and ‖u|B′ − uB
′

j ‖L2(B′) ≤ ε.
Then we have

‖u|B∪B′ − uB∪B
′

i,j ‖2L2(B∪B′) =
1

|B ∪B′|

∫
B∪B′

|u− uB∪B
′

i,j |2dx

=
1

|B ∪B′|
(

∫
B

|u− uBi |2dx+

∫
B′
|u− uB

′

j |2dx)

= max(
1

|B|

∫
B

|u− uBi |2dx,
1

|B′|

∫
B′
|u− uB

′

j |2dx),

since |B| + |B′| = |B ∪ B′| because B ∩ B′ = ∅. Then we have ‖u|B∪B′ −
uB∪B

′

i,j ‖L2(B∪B′) ≤ ε and the result follows promptly.

Proposition 2.1. The limit Hε = limL→∞
log(NQL (ε))

2L exists.

Proof. To begin with, let us observe that the global attractor is invariant by trans-
lation. Then if QL is any interval of width 2L, NQL(ε) depends on L but is indepen-
dent of the center of the interval QL. Consider now an interval of width 2(L+L′),
say [−L − L′, L + L′]. We can split this interval into two closed intervals QL and
QL′ whose length are respectively 2L and 2L′ and such that QL ∩QL′ is one point
in R. Clearly, we cover A/QL and A/] − L,L[ by the same number of balls and
then by the previous lemma

a(L+ L′) = logNQL+L′ (ε) ≤ a(L) + a(L′). (4)

Then the sequence a(L) is a van Hove sequence and the convergence of a(L)L−1 if
L→ +∞ is standard; consider

m = [
L

L′
] = max{k ∈ N; kL′ ≤ L}.

Set L = kL′ + r. Then, by induction on k

a(L) ≤ ka(L′) + a(r). (5)

Then divide by L and let L go to the infinity (for a fixed L′, then k → +∞). to
obtain

lim sup
L→+∞

a(L)

L
≤ a(L′)

L′
. (6)

We infer from the previous inequality that
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lim sup
L→+∞

a(L)

L
≤ lim inf
L′→+∞

a(L′)

L′
. (7)

and the proof is completed.

3. Proof of the upper bound in Theorem 1.3. The next two subsections are
concerned with the proof of two key lemmas in the proof of the Theorem. The first
one describes how the semigroup St deforms the balls. The second one is a covering
lemma. We conclude the proof of the upper bound in a third subsection.

3.1. Deformation of the balls. For later use we describe how the semigroup St of
CGL acts on balls in AQL ⊂ L2(QL), for short times (say t ∈ [0, 1]). Consider two
functions u0 and v0 in A. Then the trajectories Stu0 and Stv0 remain in a bounded
set of W 1,+∞(R) (we shall use this statement in the sequel without notice). We
now prove

Proposition 3.1. Set w0 = v0 − u0. Let ε > 0 with L > 2
ε . Assume

‖w0‖L2(QL) ≤ ε.
Then there exist a constant c(α, β) which depends on the data for the equation such
that

‖S1u0 − S1v0‖L2
x(QL− 1

ε
) ≤ c(α, β)ε, (8)

and
‖∇(S1u0 − S1v0)‖L2

x(QL− 1
ε
) ≤ c(α, β)ε. (9)

Proof. This deformation Lemma appears in [5]. Here we proceed to computations
using scalar products instead of properties of the kernel associated to the Ginzburg-
Landau linear flow, which is very similar to the heat flow. To begin with we prove
some energy estimates involving weighted norms. Introduce w(t) = Stv0 − Stu0.
There are two bounded functions a = 1 − (1 + iβ)(Stu0 + Stv0)Stu0 and b =
−(1 + iβ)(Stv0)2 such that

∂tw = (1 + iα)∆w + aw + bw. (10)

Consider the inner product of (10) with ρw. Then we have for a constant K that
depends on the W 1,∞ bounds on the attractor (then on the data of the equation)
and that may vary from one line to one another, such that

1

2

d

dt
||w||2ρ + ||wx||2ρ ≤ (1 + |α|)

∫
R
|ρ′||w||wx|dx+K||w||2ρ. (11)

Using |ρ′| ≤ ρ and Young inequality we thus obtain

d

dt
||w||2ρ + ||wx||2ρ ≤ K||w||2ρ. (12)

Consider now the inner product of (10) with −ρ∆w to obtain

1

2

d

dt
||wx||2ρ + ||wxx||2ρ ≤ (1 + |α|)

∫
R
|ρ′||wxx||wx|dx+K(||wx||2ρ + ||w||2ρ). (13)

We then infer from this inequality, dropping some unnecessary terms

d

dt
||wx||2ρ ≤ K(||wx||2ρ + ||w||2ρ). (14)
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From (12) using Gronwall inequality we obtain for t = 1

||w(1)||2ρ ≤ eK ||w0||2ρ. (15)

From (13) we obtain for 0 ≤ s ≤ 1

||wx(1)||2ρe−K ≤ ||wx(s)||2ρe−Ks +K

∫ 1

s

e−Kτ ||w(τ)||2ρdτ. (16)

From (12) and (15) we also have∫ 1

0

||w(τ)||2ρdτ ≤ K||w0||2ρ.

We integrate (16) between 0 and 1, and using (16) we obtain

||wx(1)||2ρ ≤ K||w0||2ρ. (17)

These computations are standard for parabolic equations. It is worth pointing out
that the computations remain valid if we substitute ρ(.− y) to ρ for any given y.
We now move to this weighted estimates to the local ones. On the one hand, there
exists α > 0 such that for x ∈ (−α, α) then ρ(x) ≥ 1

2 . Then for l = L − 1
ε there

exists m = O(l) points yj in [−l, l] ∩ αZ such that such that for any x in [−l, l],
1

2
≤

∑
1≤j≤m

ρ(x− yj).

We then have

1

2l

∫
Ql

|w(1, x)|2dx ≤ 1

l

m∑
j=1

∫
R
ρ(x− yj)|w(1, x)|2dx. (18)

We infer from (15) that

1

2l

∫
Ql

|w(1, x)|2dx ≤ K

l

m∑
j=1

∫
R
ρ(x− yj)|w0(x)|2dx. (19)

To provide an upper bound on the right hand side of (19) we divide the integral
according to the cases |x| ≤ L and |x| > L. For the former case, we have

K

l

m∑
j=1

∫
QL

ρ(x− yj)|w0(x)|2dx ≤
K||

∑m
j=1 ρ(.− yj)||L∞

l

∫
QL

|w0(x)|2dx ≤ Kε2.

(20)
Here we have used that ρ(x) = (1 +x4)−1 has enough decay at the infinity. For the
later case, we have

K

l

m∑
j=1

∫
|x|≥L

ρ(x− yj)|w0(x)|2dx ≤ K||w0||2L∞ max
1≤j≤m

∫
|x|≥L

ρ(x− yj)dx. (21)

Here we use that if ρ has enough decay and since L− l = 1
ε∫

|x|≥L
ρ(x− yj)dx ≤ c

∫ +∞

L

dx

(x− l)4
dx = O(ε2).
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The same computations are valid for wx(1) using (17) instead of (15). We skip the
details for the sake of conciseness and the proof of Proposition 3.1 is completed.

3.2. A covering lemma. In the previous subsection, we have proven that a small
ball in L2(QL) is mapped into some ball in H1(Ql), for l = L − 1

ε . The next

statement computes the number of balls L2(Ql) needed to cover the H1(Ql) ball.
This geometric statement is valid for any given l > 0.

Proposition 3.2. Let Ql be an interval in R of length 2l, and assume that U is
defined as follows

U =
{
u : Ql 7→ C such that ‖u‖L2(Ql) ≤ a and ‖∇u‖L2(Ql) ≤ b

}
then one can cover U with ( 2a

ε + 1)
8bl
πε balls of radius ε in L2(Ql).

Proof. Set l = mr,m ∈ N, with r to be specified subsequently. We divide Ql into m
intervals Qi; 1 ≤ i ≤ m of length |Qi| = 2r. We assume that Qi∩Qj has 0 Lebesgue
measure if i 6= j.

Let us introduce the orthonormal family in L2(Ql), ei(x) =
√

l
rχQi(x), where

χQi(x) =

{
1 for x ∈ Qi
0 for x ∈ Ql \Qi,

and denote by P the orthogonal projector onto the space spanned by {ei}i=1,2..m.
Denoting by (, ) the scalar product in L2(Ql), we can write

Pu(x) =

m∑
i=1

(u, ei)ei(x).

We now recall [3] the so-called Poincaré-Wirtinger inequality

‖u− 1

|Qi|

∫
Qi

u(y)dy‖L2(Qi) ≤
|Qi|
π
‖∇u‖L2(Qi). (22)

Any function u in H1(Ql) splits into u = Pu+ (u− Pu). To begin with we handle
u− Pu as follows

1

2l

∫
Ql

|u(x)− Pu(x)|2dx =
1

2l

m∑
i=1

∫
Qi

|u(x)− Pu(x)|2dx

=
1

2l

m∑
i=1

∫
Qi

|u(x)− 1

2r

∫
Qi

u(y)dy|2dx

≤ 4r2

2lπ2

m∑
i=1

∫
Qi

|∇u(x)|2dx

=
4r2

2lπ2

∫
Ql

|∇u(x)|2dx ≤ 4r2b2

π2
.

Then we fix r such that 2rb
π = ε

2 . Then on the one hand m = l
r = 4bl

επ , and on
the other hand

‖u− Pu‖L2(Ql) ≤
ε

2
. (23)
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We now handle the Pu term. To begin with let us observe that

‖Pu‖L2(Ql) =

√√√√ m∑
i=1

|(u, ei)|2 ≤ ‖u‖L2(Ql) ≤ a. (24)

We address the following issue: how many balls do we need to cover the ball

C2m =
{
x ∈ R2m; ‖x‖ ≤ a

}
in PL2(Ql) which is isometric to R2m equipped with

the Euclidian norm ||.||? For this purpose we use the following classical lemma

Lemma 3.1. Let ν(ε) the minimum number of balls of radius ε to cover C2m ={
x ∈ R2m; ‖x‖ ≤ a

}
. Then

ν(ε) ≤
(

1 +
2a

ε

)2m
.

Proof. Let ν1(ε) the maximal number of points y1, y2, ....ys, ... belonging to C2m

such that ‖yi − yj‖ > ε for i 6= j. To begin with we state and prove

ν1(ε) ≤ ν(
ε

2
) ≤ ν1(

ε

2
). (25)

To check that the left inequality in (25) is valid we proceed as follows: if ν1(ε) >
ν( ε2 ), then by the pigeonhole principle there exist two points yi and yj (i 6= j) in a
same ball of radius ε

2 ; then ||yj − yi|| ≤ ε and this is not valid according to the very
definition of the yis. We now prove the right inequality in (25), i.e ν(ε) ≤ ν1(ε).
Let yj , 1 ≤ j ≤ ν1(ε) be defined as above. We observe that ∪j{x; ||x − yj || ≤ ε}
cover C2m; if this last assertion is not valid then we can add another point yν1(ε)+1

to the family. Hence (25) is established.
To complete the proof of the lemma we observe that the balls of center yj and or
radii ε

2 are disjoints and included into the ball {x; ||x|| ≤ a + ε
2}. Due to the very

definition of the Lebesgue measure λ2m we then have

ν1(ε)(
ε

2
)2mλ2m({x; ||x|| ≤ 1}) ≤ (a+

ε

2
)2mλ2m({x; ||x|| ≤ 1}). (26)

Then gathering (25) and (26) complete the proof of the lemma.

We now complete this subsection. Consider here zj the center of the balls in
R2m ' PL2(Ql) defined in the previous lemma. Then, for any u in U there exists
one zj such that

‖u− zj‖L2(Ql) ≤ ‖u− Pu‖L2(Ql) + ‖Pu− zj‖L2(Ql) ≤ ε. (27)

Then we cover U by (1 + 2a
ε )

8bl
πε balls.

3.3. Completing the proof of the main theorem. We follow here closely [5].
For another proof see [14]. Our objective is to get an upper bound for NQL(ε). For
this purpose we use the invariance of A by St to obtain a relation between NQL(ε)

and NQL( ε2 ). Let us denote by N
(t)
QL

(ε) the number of balls B of radius ε needed to

cover the set S(t)A|QL in L2(QL) at time t ≥ 0. We then state and prove

Lemma 3.2. There exist constants C1, C2, C3 that depend on the data of the equa-
tion but which are independent of L and of ε such that

N
(t+1)
QL

(
ε

2
) ≤ N t

QL(ε)CL1 (
C2

ε
)
C3
ε2 .
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Proof. to begin with let us observe that the centers of the balls B of radius ε needed
to cover the set S(t)A|QL are not necessarily in S(t)A|QL . In any ball B we pick

a point in S(t)A|QL and thus we can cover S(t)A|QL by N
(t)
QL

(ε) balls of radii 2ε

whose centers are in S(t)A|QL . Denoting by B the set of these balls, using that A
is invariant by St we then have

St+1A|QL ⊂
⋃
B∈B

S1(B ∩ StA)|QL . (28)

To cover St+1A|QL by balls of radii ε2 we will cover any set S1(B∩StA)|QL and then
gather the bounds. To begin with we cover S1(B ∩StA)|Q

L− 1
ε

. Due to Proposition

3.1, this set is included into a ball in H1(QL− 1
ε
) of radius C(α, β)ε. We cover

this set thanks to Proposition 3.2 by CL1 balls of radius ε, where C1, C2, ... denote
constants that depend on the data α, β of the equation and that may vary from one
line to one another. We now cover the set S1(B ∩ StA)|QL−QL− 1

ε

once again using

Proposition 3.2 for a, b that are constants (independent of ε). Since QL −QL− 1
ε

is

the union of two intervals of length 1
ε , we can cover the set S1(B ∩ StA)|QL−QL− 1

ε

by (C2

ε )
C3
ε2 . Using Proposition 2.1 we cover any set S1(B ∩ StA)|QL by CL1 (C2

ε )
C3
ε2

balls. �

We now introduce n∗ + 1 ∼ log 1
ε . At time t = 0 we need CL0 balls of radius 1 to

cover the set A. We compute recursively the number of balls of radii 1
2n to cover

Sn+1A|QL , thanks to Lemma 3.2, as

N
(n+1)
QL

(
1

2n+1
) ≤ CL1 (C22n)C34

n

Nn
QL . (29)

Then

N
(n+1)
QL

(
1

2n+1
) ≤ CL0 CnL1 Πn

j=0

(
(C22j)C34

j
)
. (30)

Since, by the invariance property, N
(n+1)
QL

( 1
2n+1 ) = NQL( 1

2n+1 ) then we infer from

(30) that there exists C depending on the data to the equation such that

logN
(n∗+1)
QL

( 1
2(n∗+1) )

L
≤ logC log

1

ε
+O(1). (31)

Letting L go to infinity completes the proof of the Theorem.

4. Lower bound for the ε-entropy. In this section we establish the lower bound
for the ε-entropy. This completes the proof of Theorem 1.3, i.e

Proposition 4.1. There exists a constant C such that for ε small

1

C
log(

1

ε
) ≤ Hε.

Proof. We adapt here the method in [5] where the authors have proven that the
unstable manifold at the fixed point 0 contains a set which has large enough ε-
entropy. This method does not work straightforwardly (see the discussion in [14]),
neither the method in [20], [21] to construct the unstable manifold at 0, and then
we need to use another particular solution to CGL.

Consider L large enough and the restriction of the equation CGL to periodic
functions on QL = [−L,L]. The global attractor of this periodic CGL equation
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is included into our global attractor. We now are in the periodic setting. The

Laplacian operator has a discrete spectrum {λk = k2π2

L2 ; k ∈ Z}. There exists a
particular family of time periodic solutions to CGL that read, for λk < 1,

uk(t, x) =
√

1− λk exp(−iβt) exp(−i(α− β)λkt) exp(i
√
λkx). (32)

We now fix the integer k such that

kπ < L ≤ (k + 1)π. (33)

The idea is to prove that the unstable manifold at the periodic solution uk contains
a set which has large enough ε-entropy. We set γ = 1−λk; then γ is small for large
L, in fact

γ = 1− λk ≤ λk+1 − λk =
(2k + 1)π2

L2
� 1

L
. (34)

To begin with, we linearize the equations around uk. Setting u(t, x) = uk(t, x)(1 +
w(t, x)) we thus obtain

wt − (1 + iα)(2i
√
λkwx + wxx) + (1− λk)(1 + iβ)(|1 + w|2 − 1)(1 + w) = 0. (35)

This equation reads in an abstract form as

wt +Aw = F (w), (36)

where the nonlinearity F (w) = γ(1 + iβ)(w2 + 2|w|2 + |w|2w) is small and (up to
a truncation for large |w|, which does not matter, since we look at w such that
|w| ' 0 ) satisfies for X = L2(QL) or L∞(R)

||F (w)||X � γ||w||L∞(R)||w||X . (37)

We now study the unstable manifold of the associated linear equation. The two-
dimensional space Πm spanned by the plane waves em(x) = exp(i

√
λmx), e−m(x) =

exp(−i
√
λmx) is invariant under the partial differential operator

Aw = −2(1 + iα)i
√
λkwx − (1 + iα)wxx + γ(1 + iβ)(2w + w).

We now study Am the matrix of A restricted to Πm. This matrix Am reads

(
(1 + iα)(2

√
λkλm + λm) + 2γ(1 + iβ) γ(1 + iβ)
γ(1 + iβ) (1 + iα)(−2

√
λkλm + λm) + 2γ(1 + iβ)

)
(38)

Using this representation, we exhibit a large subspace into the unstable manifold
for the linearized equation.

Proposition 4.2. Assume L large enough (and then γ small enough). For m such

that
√
λm ∈ ( 2

3 ,
4
3 ) there exists an eigenvalue Λ−m for Am such that ReΛ−m ≤ − 2

3 .
If Em is the corresponding eigenvector and H the space spanned by these Em, then
the Ems are a Riesz basis for H, i.e. there exist c a numerical constant, that is
independent of L, such that

1

c
||
∑
m

umEm||L2(QL) ≤ (
∑
m

|um|2)
1
2 ≤ c||

∑
m

umEm||L2(QL).
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Proof. The matrix has two eigenvalues

Λ±m = (1 + iα)λm + γ(1 + iβ)± (1 + iα)

√
4λkλm + γ2(

1 + iβ

1 + iα
)2

where
√
z is defined for any complex number z = |z|eiθ such that θ 6= −π as√

|z| exp(i θ2 ). This is always possible choosing γ small enough.
We shall use now a perturbation method. Set Am(γ) for the matrix defined in

(38) above. For γ = 0 we have ReΛ−m = λm + 2
√
λm = (

√
λm − 1)2 − 1. Then for√

λm ∈ [ 23 ,
4
3 ] then ReΛ−m ≥ − 8

9 . On the other hand, introducing the matrix norm
||.|| corresponding to the Euclidean structure on Πm,

||Am(γ)−Am(0)|| � γ. (39)

We then apply the following classical Lemma (see [12] for instance)

Lemma 4.1. Assume that (39) is valid. Then there exists a constant c such that
for any eigenvalue Λγ of Am(γ) there exists an eigenvalue Λ of Am(0) such that
|Λγ − Λ| ≤ cγ.

Proof. For µ that is not an eigenvalue of Am(0) we write

Am(γ)− µId = (Am(0)− µId)[Id+ (Am(0)− µId)−1)(Am(γ)−Am(0))]. (40)

Therefore as soon as ||Am(γ) − Am(0)|| < ||Am(0) − µ)−1||−1 = inf |Λ− µ|, the
minimum computed on the eigenvalues of Am(0), then, thanks to Neumann lemma,
Am(γ)− µId is invertible. The result follows promptly.

Using this perturbation Lemma we obtain that for γ small enough the result of
the first assertion in the Proposition is granted. Let us observe that we also have
ReΛ−m ≥ −1−cγ for any eigenvalue of Am, using once again the perturbation result.

For Λ−m, the associated eigenvector is

Em(x) = exp(−i
√
λmx)− γ

2
√
λkλm +

√
4(1 + iα)2λkλm + γ2(1 + iβ)2

exp(i
√
λmx).

Therefore Em(x) = exp(−i
√
λmx) +O(γ) exp(i

√
λmx) and

||
∑
m

umEm −
∑
m

ume−m||2L2(QL)
� γ2

∑
m

|um|2, (41)

and the proof of the Proposition is completed as soon as L large enough.

Consider now H as in Proposition 4.2. We shall now flow a small ball in H into
the unstable manifold for (35) at w = 0. Consider η > 0. Consider a point f in
H ∩ BL2(QL)(0, η). We proceed as follows. For T > 0 we flow backward on the
linear equation to compute exp(TA)f ; here we have a linear differential equation
on a finite dimensional space and we can go backward in time. We now flow forward
on the nonlinear equation to compute

f(t) = exp((T − t)A)f +

∫ t

0

exp((s− t)A)F (f(s))ds. (42)

Then we consider the sequence uT = u(T ). If this sequence converges, it converges
to a point in the unstable manifold for (35) at w = 0. On the one hand, due to the
upper bound on the real part of the spectrum of A/H, we have
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|| exp((T − t)A)f ||L2(QL) ≤ exp(−2

3
(T − t))||f ||L2(QL) ≤ η exp(−2

3
(T − t)). (43)

On the other hand, it is easy to prove that

|| exp((T − t)A)f ||L∞(R) ≤ cη
√
L exp(−2

3
(T − t)); (44)

in fact we just use that the Em are bounded in L∞ and the estimate∑
m

|um| �
√
L(
∑
m

|um|2)
1
2 .

We now state and prove that f(t) remains close to exp((T − t)A)f during this back
and forth process, i.e. for t ∈ [0, T ],

Proposition 4.3. There exists a numerical constant c such that for t ∈ [0, T ]

||f(t)− exp((T − t)A)f ||L∞(R) ≤ cη2 exp(−4

3
(T − t)).

Proof. We have the obvious estimate

||f(t)− exp((T − t)A)f ||L∞(R) ≤
∫ t

0

||e(s−t)A||L(L∞)||F (f)||L∞(R)ds. (45)

On the one hand, we claim that

||e(s−t)A||L(L∞) ≤ c exp((1 +O(γ))(t− s)). (46)

To check that (46) is valid we proceed as follows. For w that solves wt+Aw = 0,
we perform the change of variable V (t, x) = exp(−t)uk(t, x)w(t, x); in fact we go
back in the original variables. Hence V is solution to

Vt − (1 + iα)∆V + γ(1 + iβ)(3V +
u2k
|uk|2

V ) = 0, (47)

or in Duhamel’s form

V (t, x) = exp((1 + iα)t∆)V0 + γ

∫ t

0

exp((1 + iα)(t− s)∆)((3V +
u2k
|uk|2

V ))ds. (48)

Hence, since || exp((1 + iα)t∆)||L(L∞(R)) ≤ 1, then

||V (t)||L∞ ≤ ||V (0)||L∞ +Kγ

∫ t

0

||V (s)||L∞ds, (49)

and by Gronwall lemma ||V (t)||L∞ ≤ ||V (0)||L∞ exp(O(γ)t). This leads to (46).
On the other hand we have the estimate

||F (f)||L∞(R) ≤ cγ||f(s)||2L∞(R) ≤ 2c(||f(s)− e(T−s)Af ||2L∞(R) + ||e(T−s)Af ||2L∞(R)).

(50)
Introduce P the orthogonal projector onto H. We now use that f belongs to H
and that the spectrum of PA is included in [−1 +O(γ),− 2

3 ] to obtain

||e(T−s)Af ||2L∞(R) � L||e
(T−s)Af ||2L2(QL)

≤ Lη2e− 4
3 (T−s). (51)

Therefore q(t) = ||f(t)− exp(T − t)Af ||L∞(R) satisfies the differential inequality
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q(t) ≤ cγLη2
∫ t

0

et−se−
4
3 (T−s) + cγ

∫ t

0

et−sq(s)2ds, (52)

with the initial condition q(0) = 0. Therefore the estimate in Proposition 4.3 is
valid for an interval [0, Tmax). As long as t < Tmax we infer from (52)

q(t) ≤ 3η2cLγe−
4
3 (T−t) + c̃γη4e−

8
3 (T−t). (53)

The right hand side of this inequality is bounded by 6η2cLγe−
4
3 (T−t). The result is

then proved, using γL = O(1).

We now complete the proof of the lower bound. The sequence f(T ) is bounded
in L2(QL) and remains also bounded in smaller Sobolev spaces due to standard
parabolic estimates. Up to a subsequence extraction, let us denote by l(f) =
limT→+∞ f(T ). This limit belongs to the unstable manifold at uk.

Due to Proposition 4.3, we have that for ||f ||L2(QL) ≤ η then

||f − l(f)||L2(QL) ≤ ||f − l(f)||L∞ ≤ cη2. (54)

Therefore we can conclude. Consider a small ball Bη in H ∩L2(QL) of radius η.
Consider ε = o(η). Due to Lemma 3.1, this small ball contains O(( η2ε )L) points yj
such that ||yj − yi||L2(QL) ≥ 2ε. In fact H ∩ L2(QL) is isometric to the euclidian

RdimH with dimH ' L. Due to (54)

||l(yj)− l(yi)||L2(QL) ≥ 2ε− 2cη2. (55)

We chose now η =
√

ε
2c . Then the unstable manifold at w = 0 contains O(( 1

ε )
L
2 )

points whose distance from one to one another is larger than ε. Therefore, using

once again Lemma 3.1 and its proof, we obtain that we need O(( 1
ε )

L
2 ) balls of radii

ε to cover this set in L2(QL). Therefore

NQL(ε) ≥ C(
1

ε
)
L
2 , (56)

and the result follows promptly.

5. Concluding remark. In this article, we have addressed the issue of the exis-
tence of the entropy by unit length for the Ginzburg-Landau equation, following
the guidelines in [5], but introducing a Hilbertian framework. The entropy depends
on the metric considered on the infinite-dimensional phase space. To go further, we
may address the following issue: as in [6], is the ε-entropy by unit length related to
the topological entropy (by unit length) ? Does this topological quantity depend
on the metric ? This issue will be addressed in a forthcoming work.
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