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ABSTRACT

We give an alternative presentation of Khovanov homology of links. The original
construction rests on the Kauffman bracket model for the Jones polynomial, and the
generators for the complex are enhanced Kauffman states. Here we use an oriented sl(2)
state model allowing a natural definition of the boundary operator as twisted action
of morphisms belonging to a TQFT for trivalent graphs and surfaces. Functoriality in
original Khovanov homology holds up to sign. Variants of Khovanov homology fixing
functoriality were obtained by Clark–Morrison–Walker [7] and also by Caprau [6]. Our
construction is similar to those variants. Here we work over integers, while the previous
constructions were over gaussian integers.

Keywords: Link homology; categorification; Jones polynomial; Khovanov; TQFT; knot
invariant.
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0. Introduction and Main Results

The Khovanov homology [10] produces bigraded homology groups which are link
invariants and whose graded Euler characteristic is the unnormalized Jones poly-
nomial. There are various nice expositions, see [1, 20] for the more basic ones. A
functorial extension of a link homology assigns to a diagram of a link cobordism
(a movie), a chain map whose action on homology is an invariant of the isotopy
class of the cobordism with fixed ends. Functoriality for the original model based
on Kauffman states holds up to sign [2, 8, 12]. This sign problem was solved by
Clark–Morrison–Walker [7] and also by Caprau [6] by introducing a variant of
Khovanov homology with coefficients in Gaussian integers. We give here a similar
construction which works over integers. The model we use is based on the N = 2
case in the graphical calculus of Murakami–Ohtsuki–Yamada [17]. Our construction
can be understood as N = 2 special case of sl(N) link homology first constructed
by Khovanov–Rozansky [13] with matrix factorizations and obtained via foams
by McKaay–Stosic–Vaz [18]. As suggested by Manturov who considered Khovanov
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homology for virtual knots [15,16], it is very likely that our model extends to virtual
knots.

To each oriented link diagram in the plane we associate a bigraded abelian group
K(D) with a self map δ and show the following Theorem 3.1.

Theorem 3.1. (a) (K(D), δ) is a bigraded complex over Z.
(b) If the diagrams D and D′ are related by a Reidemeister move, then there exists

a graded homotopy equivalence between the complexes K(D) and K(D′).
(c) The graded Euler characteristic of K(D) is equal to q + q−1 times the Jones

polynomial with change of variable q = −t−
1
2 .

We associate to a movie from a link diagram to another, a chain map, and show
the following Theorem 5.1.

Theorem 5.1. Let C ⊂ [0, 1]×S3 be a smooth cobordism between the links L and L′

represented by respective diagrams D and D′. The homology map Kh(D) → Kh(D′)
induced by a movie description of C only depends on the isotopy class of C rel.
L×{0}∪L′×{1}, and Kh extends to a functor on the embedded cobordism category.

1. Trivalent TQFT

1.1. Frobenius algebra

Equivalences classes of TQFTs for oriented surfaces are in one to one cor-
respondence with commutative Frobenius algebras up to isomorphism (see [9,
3.3.2 and historical remarks 3.3.4]. We consider here the Frobenius algebra
A = Z[X ]/X2 ≈ H∗(CP 1), and we denote by VA the associated TQFT. The unit
element in A is denoted by 1; the coalgebra structure (∆, ε) on A is defined by

ε(X) = 1, ε(1) = 0;

∆(X) = X ⊗ X, ∆(1) = 1 ⊗ X + X ⊗ 1.

The invariant of a closed surface is given below.

VA(S1 × S1) = rank(A) = 2,

VA(Σg) = 0 for a closed surface Σg with genus g �= 1.

The TQFT is extended to surfaces with points. The neighborhood of a point repre-
sents the element X in the algebra associated with the oriented circle VA(S1) = A.
For a connected genus g closed surface with k points the invariant is zero except

• for (g, k) = (1, 0) where the value is 2, and
• for (g, k) = (0, 1) where the value is 1.
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1.2. The universal construction

The universal construction for cobordism generated TQFT was pioneered in [5].
Let us sketch how we can reconstruct the above specific TQFT functor VA from
the invariant of closed surfaces with points denoted by I. The TQFT module of
an oriented curve γ is generated over Z by surfaces with points whose boundary is
identified with γ. Relations are given by the submodule

V0(γ) =

{∑
i

λiMi, for any cobordism M = (M, γ, ∅),
∑

i

I(Mi ∪γ M) = 0

}
.

A key point in proving that the functor VA defined this way is indeed a TQFT is
the surgery formula in Fig. 1.

Here cobordisms are depicted from left to right. The graphical identity can be
written

IdA = ε(X × ·)1 + ε(·)X.

1.3. Graded TQFT

We define a grading on A = Z[X ]/X2, by deg(1) = −1, deg(X) = 1. The
q-dimension (or Poincaré polynomial) of the TQFT module associated with a k

components curve is (q + q−1)k. The TQFT functor is graded. For a cobordism Σ
between γ and γ′, the linear map

VA(Σ) : VA(γ) → VA(γ′)

has degree −χ(Σ) + 2�pts. Here χ(Σ) is the Euler characteristic, and �pts is the
number of points.

1.4. Trivalent category

We will extend the TQFT over the cobordism category whose objects are trivalent
graphs and whose morphisms are trivalent surfaces. Here a trivalent graph is an
oriented graph with edges labeled with 1 or 2, and 3-valent vertices where the flow
condition is respected. For each trivalent vertex, an order on the 2 (germs of) edges
labeled with 1 is fixed. For a planar graph we use plane orientation and fix the
order according to the rule depicted in Fig. 2; the labels of the edges are obviously
encoded in the arrows.

A closed trivalent surface is a 2-complex whose regular faces are oriented and
labeled with 1 or 2. The singular locus is a curve called the binding; each component

VA( ) = VA( ) + VA( )

Fig. 1. Surgery formula.
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Fig. 2. Trivalent vertices.

of the binding has a neighborhood which is a triod times S1, i.e. there are two
1-labeled pages inducing the same orientation and one 2-labeled page inducing
the opposite orientation. For each component of the binding, an order on the two
1-labeled pages is fixed. A 1-labeled face may have points on it.

Cobordisms are obtained by cutting in a generic way. The boundary of a cobor-
dism is a trivalent graph, and a component of the binding may be a triod times an
interval. They are considered up to the usual equivalence of oriented homeomor-
phism rel. boundary.

1.5. TQFT on the trivalent category

The following general procedure constructs a functor on the trivalent cobordism
category. We first define an invariant of closed trivalent surfaces, and extend it into
a functor on the trivalent category via the universal construction introduced in [5]
and sketched above (1.2) for surfaces. For the specific example used in the present
paper, we will get a TQFT functor on the full subcategory whose objects are planar
trivalent graphs.

Suppose that we are given Frobenius algebras A, B and C over a ring k, with
corresponding TQFT functors denoted by VA, VB and VC . Let Σ be a closed triva-
lent surface, and Σ̇ = Σ1 � Σ2 be the surface cut along the binding, decomposed
according to the label of the faces. Let m be the number of components of the bind-
ing of Σ. The boundary of Σ1 has 2m oriented components C+

i and C−
i , 1 ≤ i ≤ m,

and the boundary of Σ2 has m components C2
i . Here the ± is fixed with respect to

the ordering of the 1-labeled pages, i.e. C+
i is the boundary of the first page. The

TQFT functors VA and VB associate to Σ1 and Σ2 vectors

VA(Σ1) ∈
m⊗

i=1

(VA(C+
i ) ⊗ VA(C−

i )) ∼= (A ⊗ A)⊗m,

VB(Σ2) ∈
m⊗

i=1

VB(C2
i ) ∼= B⊗m.

Now suppose that we are given maps f = A ⊗ A → C, g : B → C, then we define
the invariant V(Σ) by the formula

V(Σ) = (εC)⊗m(f⊗m(VA(Σ1)) × g⊗m(VB(Σ2)) ∈ k⊗m = k.
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Here εC : C → k is the trace on the Frobenius algebra C; the product is computed
in C⊗m.

From now on, we use the Frobenius algebras over Z: A = Z[X ]/X2 ≈ H∗(CP 1),
C = A, and B = Z with non standard trace εB(n) = −n. We quote that the subtil-
ity which will give strict functoriality is contained in this non standard trace. If we
chose the standard trace, the construction reproduces original Khovanov homology.
The structural map f is defined by f(x⊗y) = xy, where a + bX = a−bX (a, b ∈ Z),
and g : B = Z → C = A is the unit map.

Example 1.1. Let us consider the trivalent surface which is a sphere together with
a 2-labeled meridional disk, and whose 1-labeled half-spheres are ordered north-
south. The associated value

• is 0 if there is no point,
• is 1 if there is one point which is on north half-sphere,
• is −1 if there is one point which is on south half-sphere,
• is 0 if there is more than one point.

The universal construction extends the invariant V to a functor on the trivalent
cobordism category. The following proposition shows that the functor V is an exten-
sion of the TQFT functor VA.

Proposition 1.2. (a) We have a natural transformation from VA to V, i.e. for
an oriented curve γ, we have a TQFT module VA(γ), a module V(γ), and a
natural map

iγ : VA(γ) → V(γ).

Here we label all the components of γ with 1, and consider γ as an object in
the trivalent category.

(b) For any curve γ, the natural map iγ is an isomorphism.

Proof. The surgery formula in Fig. 1 holds for surgery on a 1-labeled face of a
trivalent surface. Using this formula along each component of the curve γ, we see
that any trivalent surface with boundary γ representing a generator of V(γ) can be
written as a linear combination of disks (may be with points), and that any linear
combination representing a relation in VA(γ) also represents a relation in V(γ).
This proves existence and surjectivity of iγ . Injectivity of iγ and naturality follows
from the definitions in the universal construction.

The extended functor V is still graded. The formula for a cobordism Σ is

deg(Σ) = −χ1(Σ) + 2�pts.

Here χ1(Σ) is the Euler characteristic of the 1-labeled subsurface, e.g. the saddle
with 2-labeled membrane in Fig. 3 has grading 1. Here 1-labeled faces are depicted
in light grey and the 2-labeled half-disc is black.
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Fig. 3. Trivalent surface with grading 1.

The lemma below gives some examples of computation with the extended func-
tor V. These results will be useful in the subsequent categorification procedure.
In the pictures, the order on the germs of 1-labeled edges is fixed by the following
plane convention (Fig. 2): the first 1-labeled edge is on the right of the oriented
2-labeled adjacent edge. Proofs are left as exercise.

Lemma 1.3. (a) If Σ′ is obtained from Σ by moving a point across a component
of the binding then V(Σ′) = −V(Σ).

(b) The bubble relations in Fig. 4 hold.
(c) The band moves relations in Fig. 5 hold.
(d) The tube relations in Fig. 6 hold (the sign depends on the order of the 1-labeled

pages at each binding).

= = −

= 0

= = −

Fig. 4. Bubble relations.
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= −

=

Fig. 5. Band relations.

= ±

= ±

Fig. 6. Tube relations.
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In the pictures, the 2-labeled faces are depicted in black, the 1-labeled faces are
depicted in grey. The small arc indicates the order around the binding.

2. Categorification of the sl(2) Invariant of Planar Graphs

We consider here trivalent planar graphs whose edges are smooth; each edge has a
label equal to 1 or 2. In each trivalent vertex, the flow is conserved, and the tangent
vectors are coherent. Loops with label 1 are accepted. The admissible vertices are
depicted in Fig. 2. In the representation theoretic setting, 1-labeled edges corre-
spond to the standard representation of sl(2), and 2-labeled edges correspond to
its determinant (isomorphic to the trivial representation).

An enhancement ε for such a graph is a map from the set of 1-labeled edges to
{−1, 1} required to have distinct values for the two edges adjacent to a trivalent
vertex. To each trivalent vertex v we associate a weight W(v) = q±

1
2 . Here q is

an indeterminate, and the sign is given by the state of the right handed edge. The
sl(2) invariant of such a graph G is given by

〈G〉 =
∏

vertices v

W(v)q
P

a ε(a)rot(a).

The sum is over all 1-labeled edges a, and rot(a) is the variation of the tangent vector
along the edge, normalized so that it gives the Whitney degree (signed number of
rotation) for a closed curve.

The invariant 〈G〉 is easily seen to be equal to (q + q−1)�G1 where �G1 is the
number of components of the curve composed with the 1-labeled edges. Its interest
is that it allows to give a state model for the Jones polynomial similar to the
Kauffman bracket state model, but taking into account the orientation.

We associate to such a graph the graded module V(G) = ⊕kVk(G). For any
graph G, the module V(G) admits a finite set of generators which can be obtained
by first pairing the trivalent vertices with singular arcs and then gluing discs, may
be with points on the 1-labeled ones. The module itself can then be computed using
the pairing.

Exercise 2.1. Let G1, G2, G3, G4 be the graphs depicted in Fig. 7.

(a) Show that

V(G1) ≈ A, V(G2) ≈ A⊗2.

(b) (**) Show that

V(G3) ≈ A⊗2, V(G4) ≈ A.

(Use the grading to have an upper bound on the number of points.)
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Fig. 7.

Proposition 2.2. For any planar trivalent graph G, the module V(G) is a free
abelian group whose q-dimension is equal to the invariant 〈G〉:

〈G〉 =
∑

k

qk rank(Vk(G)).

Remark 2.3. We understand this result as a categorification of the invariant 〈G〉.
Indeed, the functor V associates to a graph G a graded abelian group which can
be interpreted as (co)homology concentrated in (co)homological degree zero. The
purpose of the next section is to extend this categorification to link diagrams.

Remark 2.4. It follows that VA is multiplicative for disjoint union of planar
graphs. Hence V is a TQFT functor on the full trivalent subcategory whose objects
are planar trivalent graphs.

Proof. We proceed by induction on the number of 2-labeled edges. If this number
is 0, we get a curve γ. From Proposition 1.2, the module V(γ) is A⊗�γ whose graded
dimension is (q + q−1)�γ .

Consider a connected component F of the graph G which is not a circle. Each
face of F has an even number of edges (F is bipartite). By an Euler characteristic
argument the graph F has at least one face which is either a bigon or a square.
Lemmas 2.5 and 2.7 below shows that the computation reduces to graphs with less
2-labeled edges.

Lemma 2.5 (Bigons). (a) V( ) � V( ).

(b) V( ) � V( ).

(c) V( ) � V( ){−1} ⊕ V( ){1}.
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Here the bracket in right hand side of (c) indicates a shift in the grading.

Proof. (a) and (b) are deduced from the band relations in Lemma 1.3(c). Indeed
the cobordisms in the right-hand side of these relations can be decomposed by
cutting in the middle. The induced TQFT maps give the needed isomorphisms.

Lemma 2.6 below, whose proof is left to the reader, decomposes identity of the
module on the left-hand side of (c) into two orthogonal idempotents whence the
direct sum decomposition. Note the shift given by the degree of the cobordisms
inducing the projection on each summand.

Lemma 2.6. The relations in Fig. 8 hold.

Lemma 2.7 (Squares). (a) V( ) � V( ).

(b) V( ) � V( ).

Proof. Isomorphisms in (a) are depicted in Fig. 9. Both compositions give identity
up to sign. One can be seen using relations in Lemma 1.3. The second one is an
identity in V(G3) where G3 is the graph described in Fig. 7, which can be checked
by pairing with degree −2 generators of V(G3). Isomorphisms in (b) are described
in Fig. 10.

= −

Fig. 8. Bigon relation.

Fig. 9. Isomorphisms in Lemma 2.7(a).
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Fig. 10. Isomorphisms in Lemma 2.7(b).

3. Khovanov Homology

3.1. Jones polynomial via planar graphs

The formulas below extend the preceeding sl(2) invariant of planar trivalent graphs
to an invariant of link diagrams. This is N = 2 case in [17].

〈 〉 = q−1 〈 〉 − q−2〈 〉

〈 〉 = q 〈 〉 − q2〈 〉

The normalization for the empty link is 1, and we have the following skein relation

q2〈 〉 − q−2〈 〉 = (q − q−1) 〈 〉 . (3.1)

Up to normalization, we recognize the Jones polynomial with the change of variable
q = −t−

1
2 . A global state sum formula for a link represented by a diagram D is

given below. Note that it is quite easy to show that this formula is invariant under
Reidemeister moves; this is a slight variant of the Kauffman bracket construction.

We give a global state sum formula for a diagram D. A state s of D associates
to a positive (respectively, negative) crossing either 0 or 1 (respectively, −1 or 0).
For a state s, Ds is the planar trivalent graph, defined by the rule:

if s(c) = 0, then c is replaced by

if |s(c)| = 1, then c is replaced by .

One has

〈D〉 =
∑

s

q−(w(D)+s(D))〈Ds〉. (3.2)

Here w(D) =
∑

c sign(c), and s(D) =
∑

c s(c).
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3.2. Khovanov complex

We consider a link diagram D. For a state s, we define the trivalent graph Ds

according to the local rules described just above. We use the notation ds for
∑ |s(c)|,

and ∆s for the free abelian group generated by crossings c with |s(c)| = 1. The
Khovanov complex is a bigraded abelian group K(D) defined below, together with
a convenient boundary operator.

K(D) =
⊕

s

V (Ds)

{
−

∑
c

(sign(c) + s(c))

}
⊗ ∧ds∆s. (3.3)

The cohomological degree s(D) =
∑

c s(c) will be called the height, and the graded
degree, equal to the one in the TQFT functor V, up to a shift, will simply be called
the degree. The shift from the TQFT degree is prescribed by the integer between
braces in such a way that

q-dim(G{i}) = qi q-dim(G).

It is convenient to give a local description of the complex. Here we implicitly extend
the definition of K to trivalent diagrams, where only 1-labeled edges are allowed
for crossings.

K( ) = K( ) {−1} ⊕ K( ) {−2}

K( ) = K( ) {2} ⊕ K( ) {1} .

The boundary operator between summands indexed by states s and s′ is zero
unless s and s′ are different only in one crossing c, where s′(c) = s(c) + 1. For
a positive crossing (respectively, a negative crossing) it is then defined using the
TQFT map associated with the cobordism Σ, (respectively, Σ′) which are identity
outside a neighbourhood of the crossing, and are given by a saddle with 2-labeled
membrane, around the crossing c with s(c) = 0, s′(c) = 1 (respectively, s(c) = −1,
s′(c) = 0).

Σ : Σ′ :

For a positive crossing c:

δ = V(Σ) ⊗ (• ∧ c) : V(Ds) ⊗ ∧ds∆s → V(Ds′) ⊗ ∧ds′∆s′ .
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For a negative crossing c,

δ = V(Σ′)⊗ < •, c >: V(Ds) ⊗ ∧ds∆s → V(Ds′) ⊗ ∧ds′∆s′ .

Here < •, c > is (the antisymmetrization of) the contraction (using the standard
scalar product we understand c as a form).

Theorem 3.1. (a) (K(D), δ) is a graded complex.
(b) If the diagrams D and D′ are related by a Reidemeister move, then there exists

a graded homotopy equivalence between the complexes K(D) and K(D′).
(c) The graded Euler characteristic of K(D) is equal to the quantum invariant 〈D〉,

i.e to q + q−1 times the Jones polynomial with change of variable q = −t−
1
2 .

We will use the notation Kh(D) for the homology of the complex K(D). This
theorem says that the isomorphism class of the graded group Kh(D) is an invariant
of the isotopy class of the corresponding link.

Proof. We first prove (a). The map ∂ increases the height by one. The elementary
cobordism given by a saddle has Euler characteristic −1. The corresponding TQFT
map has degree +1, and the map ∂ on the shifted TQFT groups has degree 0.
We want now to compute ∂ ◦ ∂. The possibly non trivial contributions come from
squares corresponding to states s and s′′ identical on all crossings except c1 and c2,
where s′′(c1) = s(c1)+1 and s′′(c2) = s(c2)+1. We have two intermediate states s′1
(s′1(c1) = s(c1)+1 and s′1(c2) = s(c2)) and s′2 (s′2(c1) = s(c1) and s′2(c2) = s(c2)+1),
giving two contributions represented by the same cobordism Σ with two saddles (for
the TQFT maps, squares commute). Each of them is twisted. We have to check that
after twisting the two contributions vanish (squares anticommute) in all cases.

If c1 and c2 are both positive crossings, then we get

V(Σ) ⊗ (• ∧ c1 ∧ c2 + • ∧ c2 ∧ c1) = 0.

If c1 and c2 are both negative crossings, then we get

V(Σ) ⊗ (< •, c1 ∧ c2 > + < •, c2 ∧ c1 >) = 0.

If c1 is a positive crossing and c2 is a negative crossing, then we get

V(Σ) ⊗ (< • ∧ c1, c2 > + < • ∧ c1 > ∧c2) = 0.

The graded Euler characteristic of the complex K(D) satisfies the Jones skein
relation (3.1), and is equal to q+q−1 for the trivial diagram. Statement (c) follows. In
the next subsections, we will construct homotopy equivalences for each Reidemeister
move, and obtain (b).
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3.3. Reidemeister move I

We first consider the case of a positive crossing.

K( ) =

[
K( ) δ−→ K( )

]
.

Recall that the map δ is equal to V(Σδ) ⊗ (• ∧ c) where Σδ contains a saddle with
membrane as depicted in Fig. 11.
Consider the followings maps.

f : K( ) → K( )

is the TQFT map associated with the cobordism in Fig. 12.

g : K( ) → K( )

is the sum of the TQFT maps associated with the cobordisms in Fig. 13.

D : K( → K( )

is equal to −V(ΣD)⊗ < •, c > where ΣD is depicted in Fig. 14.

Fig. 11.

Fig. 12.

Fig. 13.



April 5, 2010 15:56 WSPC/S0218-2165 134-JKTR S0218216510007863

An Oriented Model for Khovanov Homology 305

Fig. 14.

We have that

δ ◦ g = 0.

Hence f and g define chain maps. We have that

f ◦ g = Id,

Id − g ◦ f = D ◦ δ and δ ◦ D = Id.

Hence we have that D is an homotopy between Id and g ◦ f .
We consider now the case of a negative crossing.

K( ) =

[
K( ) δ−→ K( S)

]

Here the map δ is equal to V(Σδ)⊗ < •, c > where Σδ is a saddle. Consider the
followings maps.

f : K( ) → K( )

is the TQFT map associated with the cobordism in Fig. 12.

g : K( ) → K( )

is the sum of the TQFT maps associated with the cobordisms in Fig. 13.

D : K( → K( )

is equal to V(ΣD)⊗ < •, c > where ΣD is depicted in Fig. 15.
We have that

f ◦ δ = 0.

Hence, f and g define chain maps. We have that

f ◦ g = Id,

Id − g ◦ f = δ ◦ D and D ◦ δ = Id.

Hence, we have that D is a homotopy between Id and g ◦ f .
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Fig. 15.

3.4. Reidemeister II+

The complexes we want to consider are described in the diagram below.

K





 , K





 =







Inverse homotopy equivalences are given by the maps f and g defined below

f = 1 ⊕ V(Z) ⊗ (• ∧ c ∧ c′),

g = 1 ⊕ V(Z ′)⊗ < •, c ∧ c′ > .

Here Z and Z ′ are the trivalent surfaces depicted in Fig. 16. One can check that
δ ◦ f = 0 and g ◦ δ = 0 , so that f and g define chain maps. We have f ◦ g = Id,

Z : Z ′ :

Fig. 16.
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moreover there exists D0, D1 as depicted in the diagram above such that

δ ◦ D1 = Id, D0 ◦ δ = Id, g ◦ f + D1 ◦ δ + δ ◦ D0 = Id.

Exercise 3.2. Find D0, D1 as expected (hint: use the bigon relation 2.6).

3.5. Reidemeister II−

Homotopy equivalences for negative Reidemeister move are defined in a similar way.
The homotopy equivalence checking rests essentially on Lemma 2.7(a).

3.6. Reidemeister III

We have to consider the complex decomposed as a cube as described below, and
the symmetric one.

K





 =







We can find an acyclic subcomplex.

Lemma 3.3. The subcomplex described below is acyclic.





Proof. The proof rests essentially on Lemma 2.7(b).

We then apply a Gauss reduction (see e.g. [3, Lemma 4.2]) and obtain a homo-
topy equivalence with a smaller comlex. Note that the above acyclic subcomplex is
not a direct summand so that we have to carefully recalculate the boundary map
including the action on the twisting determinant. The result is described below Here
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the boundary maps are given by a saddle with a 2 labeled membrane as before, ten-
sored with a map on top exterior powers corresponding to the indication near the
arrows.

K





 �







We have

K





 �







.

An isomorphism between the two complexes is obtained by using the idendity map
on the TQFT modules, and c �→ d′′, c′ �→ d′, c′′ �→ d on the twisting determinants.

4. Lee–Rasmussen Spectral Sequence

Following Lee and Rasmussen [14, 19], we consider now the Frobenius algebra
A′ = Z[X ]/X2 − 1, and the associated TQFT functor V′. The preceeding con-
struction applies as well, excepted that here the TQFT functor V′ is no more
graded, but filtered. A generator of a TQFT module V′(γ) is given the same degree
as before, and F j(V′(γ)) is spanned by generators with degree less than or equal
to j. Observe that a cobordism Σ induces a filtered map, with degree equal to
−χ(Σ) + 2(�points).

We consider the filtered abelian group K ′(D) defined below, with the same
notation as before.

K ′(D) =
⊕

s

V′(Ds){−
∑

c

(sign(c) + s(c))} ⊗ ∧ds∆s. (4.1)

The boundary operator ∂′ is still defined by the TQFT map associated with a
saddle tensored with the natural map on the top exterior power. We denote by
Kh′(D) the homology of this complex.



April 5, 2010 15:56 WSPC/S0218-2165 134-JKTR S0218216510007863

An Oriented Model for Khovanov Homology 309

Theorem 4.1. (a) (K ′(D), ∂′) is a filtered chain complex.
(b) If the diagrams D and D′ are related by a Reidemeister move, then there exists

a filtered homotopy equivalence between the complexes K ′(D) and K ′(D′).
(c) There exists a spectral sequence whose second page is the homology of our com-

plex K

Ei,j
2 (D) = Khi−j,j(D),

which converges to Kh′∗(D).

Proof. (a) and (b) are proved as before. Statement (c) follows from standard facts
with filtered chain complexes.

The theorem shows that all the pages with index greater or equal to 2 are
invariants of the link. For Khovanov original homology, it was proved by Lee [14]
that the limit depends only on the number of components. Rasmussen [19] was able
to extract a lower bound for the slice genus and to use it to give a combinatorial
proof of Milnor conjecture on the slice genus of torus knots.

We will compute our oriented version of Lee–Rasmussen homology over Λ = Z[12 ]
using the Karoubi completion method of Bar-Natan and Morrison [4]. We denote
by Kh′(D, Λ) the homology of K ′(D) ⊗ Λ.

Theorem 4.2. For a link diagram D with m components, Kh′(D, Λ) is a free
Λ-module of rank 2m, with a canonical basis indexed by maps ε : π0(D) → {±1}.

Proof. The algebra A′ contains the minimal idempotents

π± =
1± X

2
.

Using these idempotents we extend the TQFT functor V′ to an extended trivalent
category where 1-labeled edges or faces may be colored with π±. If 1-labeled edges
in a trivalent graph γ are colored with a sequence of signs denoted by ε, then
we obtain an object γ(ε) whose associated module is the image of the obvious
projector πε ∈ V′(γ), associated with ε. The relation in Lemma 1.3(a) still holds
for the functor V′. We deduce that the module V′(γ) is zero if signs agree on
the two 1-labeled edges adjacent to a vertex. For an alternating sign assignment ε,
the module V′(γ(ε)) has rank one with a basis represented by a trivalent surface
with only discs (without points) as 2-cells. The complex K ′(D) which was a sum
indexed by states, is now decomposed into a sum indexed by colored states (states
with coloring of all arcs). The boundary map can be computed locally. The TQFT
map associated to a saddle is zero unless all colors coincide on the arcs belonging
to the same 1-labeled component. In the remaining case, this TQFT map is an
isomorphism. We obtain a deformation retract on a subcomplex K ′′(D) where the
boudary map is zero. Locally, i.e. for a crossing, the subcomplex K ′′(D) is described
in Fig. 17. For a generator, the signs associated with arcs belonging to the same
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Fig. 17. The subcomplex with vanishing differential.

component of the represented link are the same. Moreover, for an assignment of
signs on the components, the state of each crossing is determined so there is a
unique corresponding generator.

5. Functoriality

Extension of Khovanov homology to link cobordisms and functoriality up to sign
was conjectured by Khovanov and established by Jacobson [8], Khovanov [12] and
Bar-Natan [2]. The sign ambiguity was carried over by Clark–Morrison–Walker [7]
and also by Caprau [6]. In this section we show that our construction has a strictly
functorial extension to link cobordism.

A movie description of a cobordism is a generic projection in [0, 1] × R2 of a
smooth surface in [0, 1]×R3. Generically, a movie decomposes into elementary ones
which either describe a Reidemeister move or glue a handle to the surface. To each
Reidemeister type movie we associate the corresponding homotopy equivalence,
and to each handle addition we associate the corresponding TQFT map. We then
compose these elementary chain maps.

Theorem 5.1. Let C ⊂ [0, 1] × S3 be a smooth cobordism between the links L

and L′ represented by respective diagrams D and D′. The homology map Kh(D) →
Kh(D′) induced by a movie description of C only depends on the isotopy class of
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C rel. L× {0} ∪L′ × {1}, and Kh extends to a functor on the embedded cobordism
category.

Remark 5.2. Note that here we consider fixed links, and not links up to isotopy.
It was observed by Jacobson that Khovanov homology does have monodromy.

Proof. The point is to check that for a list of movie moves the two induced homol-
ogy maps coincide. We borrow from Bar Natan [2] the argument of simplicity show-
ing projective functoriality, which works here as well. We get that for each movie
move MM, the two maps on the filtered complexes K ′(.) are filtered homotopic up
to a sign ε(MM). The corresponding two maps on the homologies Kh(.) are equal
up to the same sign ε(MM). For each movie move MM, we have to show that the
sign ε(MM) is 1.

In Theorem 4.2, we gave a basis for Kh′(L). It contains a distinguished element
associated with the assignment of a positive sign to all components. This canonical
element is respected by the map associated with a Reidemeister move II+ or III.
In Reidemeister I, it is respected up to a coefficient 1

2 and 2 respectively for maps
f and g. We also get 1

2 and 2 coefficient in RII- for a natural choice of homotopies.
For a 1-handle the canonical element is respected, up to a coefficient 2 in the case
where the number of components increases by one (because ∆(p+) = 2p+ ⊗ p+).
For a 2-handle we get a coefficient 1

2 . For a 0-handle, the canonical basis element
y+ is sent to y+ ⊗ 1 (which is not the canonical one). For all the movie moves
except those with a 0-handle, we will get a positive coefficient, and we are done. By
a small computation we see that the three remaining moves MM11, MM12, MM14
in [2, Fig. 13] are also satisfied.
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